Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Philip J. Cox

School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.039 wR factor = 0.086 Data-to-parameter ratio = 10.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Weak C—H···O hydrogen bonding and aromatic π - π -stacking interactions in 1-(4-chlorophenyl)-propan-1-one

The supramolecular structure of this low melting point compound, C₉H₉ClO, is characterized by weak C-H···O hydrogen bonding and π - π stacking of aromatic rings.

Received 30 April 2002 Accepted 13 May 2002 Online 17 May 2002

Comment

Propiophenone is a colourless liquid that has been incorporated as a guest into inclusion compounds (Scott, 1997; Gdaniec & Polonski, 1998; Nakano *et al.*, 2001). The 4-chloro derivative, (I), has a low melting point (307–310 K) and has also been subjected to an X-ray crystallographic examination as a guest molecule in an inclusion compound (Weisinger-Lewin *et al.*, 1987). The low melting point suggests that the crystal packing forces are easily broken, and these interactions have been characterized in this investigation.

The short *c* axis [3.945 (4) Å] for a disubstituted benzene molecule suggests face-to-face intermolecular π - π -stacking interactions. Mean-plane calculations for the aromatic rings stacked along the *c* axis give interplanar separations of 3.48 (1) Å (Fig. 2). The rings are displaced from each other (direct overlap is repulsive) such that the shortest separations between any two aromatic C atoms in translation-related rings are $C1 \cdots C2^{iii} = 3.510$ (6) Å and $C4 \cdots C5^{iii} = 3.511$ (6) Å [symmetry code: (iii) *x*, *y*, 1+*z*].

The 16 molecules of the unit cell are shown in Fig. 3. Two weak, but quite linear, $C-H \cdot \cdot \cdot O$ hydrogen bonds are present (Table 2), such that each molecule is linked to four other molecules (Fig. 4). Here, O1 is the acceptor atom and C2 and C8 are the donor atoms.

The C_{aromatic}—Cl bond length [1.747 (3) Å] is normal, as are all other bond lengths and angles for this type of molecule. The shortest intermolecular distance involving the Cl atom is $Cl1\cdots C9^{iv} = 3.541$ (5) Å [symmetry code: (iv) 5/4-x, -1/4+y, 3/4+z], similar to the sum of van der Waals radii, 3.45 Å (Bondi, 1964; Spek, 2001).

Figure 1

The atomic arrangement in the molecule. Displacement ellipsoids are shown at the 50% probability level.

Experimental

The title compound was purchased from Aldrich and crystals were grown by sublimation.

Crystal data

C₉H₉ClO $M_r = 168.61$ Orthorhombic, *Fdd2* a = 18.6188 (14) Å b = 45.383 (4) Å c = 3.945 (4) Å $V = 3334 (3) \text{ Å}^3$ Z = 16 $D_x = 1.344 \text{ Mg m}^{-3}$

Data collection

Mo K α radiation Cell parameters from 7501 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 120 (2) K Block, colourless $0.20 \times 0.10 \times 0.08 \text{ mm}$

Nonius KappaCCD area-detector
diffractometer1292 ind
1105 ref φ and ω scans $R_{int} = 0.$ Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)h = -23
K = -584434 measured reflectionsl = -2 - 12

1292 independent reflections 1105 reflections with $I > 2\sigma(I)$ $R_{int} = 0.082$ $\theta_{max} = 27.5^{\circ}$ $h = -23 \rightarrow 24$ $k = -58 \rightarrow 58$ $l = -2 \rightarrow 5$

Figure 2

Translation π - π stacking (for clarity, only four of the 16 molecules in the unit cell are utilized).

Figure 3

A selection of C–H···O hydrogen bonding between the 16 molecules of the unit cell (additional molecular translations along [001] are required for completeness).

Refinement

1

(

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0501P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	where $P = (F_o^2 + 2F_c^2)/3$
$vR(F^2) = 0.086$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.01	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
292 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
27 parameters	Absolute structure: Flack (1983);
Only coordinates of H atoms	367 Friedel pairs
refined	Flack parameter $= 0.08$ (9)

Table 1

Selected geometric parameters (Å, °).

Cl1-C4	1.747 (3)	C5-C6	1.376 (4)
O1-C7	1.215 (3)	C7-C8	1.511 (4)
C1-C6	1.403 (4)	C8-C9	1.516 (4)
C1-C7	1.500 (4)		
C7 C8 C9	114.0(2)		
0/-08-09	114.0 (2)		
01-C7-C8-C9	-6.5(5)	C1-C7-C8-C9	173.3 (3)

Figure 4

Edge view showing the C-H···O hydrogen bonding linking a 4chloropropiophenone molecule to four adjacent molecules.

Table 2

Hydrogen-bonding geometry (Å, °).

ranged from 0.90 (4) to 1.01 (3) Å.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O1^{i}$ $C8-H8B\cdots O1^{ii}$	0.97(3) 1.00(3)	2.46(3) 2 48(3)	3.404 (5)	167 (3) 167 (3)
Symmetry codes: (i) a	$\frac{100}{100}$	$(ii) x - \frac{1}{2} \frac{1}{2} - y$	$7 - \frac{1}{7}$	107 (5)

All H atoms were initially placed in calculated positions and thereafter allowed to refine freely with constrained isotropic displacement parameters; for methyl H atoms $U_{iso} = 1.3U_{eq}(C)$, for

non-methyl H atoms $U_{iso} = 1.2U_{eq}(C)$. Final C-H bond lengths

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2001).

We thank the EPSRC for use of the National Crystallographic Service at Southampton University (X-ray data collection), and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
- Gdaniec, M. & Polonski, T. (1998). J. Am. Chem. Soc. 120, 7353-7354.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Nakano, K., Sada, K., Kurozumi, Y. & Miyata, M. (2001). Chem. Eur. J. 7, 209-220.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Scott, J. L. (1997). Supramol. Chem. 8, 231-239.
- Sheldrick, G. M. (1997). SHELXL97-2. University of Göttingen, Germany.
- Spek, A. L. (2001). PLATON. Version 101201. University of Utrecht, The Netherlands.
- Weisinger-Lewin, Y., Vaida, M., Popovitz-Biro, R., Chang, H. C., Mannig, F., Frolow, F., Lahav, M. & Leiserowitz, L. (1987). Tetrahedron, 43, 1449-1475.