Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Philip J. Cox

School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.086$
Data-to-parameter ratio $=10.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Weak $\mathrm{C}-\mathrm{H} \ldots \mathrm{O}$ hydrogen bonding and aromatic π - π-stacking interactions in 1-(4-chlorophenyl)-propan-1-one

The supramolecular structure of this low melting point compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}$, is characterized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and $\pi-\pi$ stacking of aromatic rings.

Comment

Propiophenone is a colourless liquid that has been incorporated as a guest into inclusion compounds (Scott, 1997; Gdaniec \& Polonski, 1998; Nakano et al., 2001). The 4-chloro derivative, (I), has a low melting point (307-310 K) and has also been subjected to an X-ray crystallographic examination as a guest molecule in an inclusion compound (Weisinger-Lewin et al., 1987). The low melting point suggests that the crystal packing forces are easily broken, and these interactions have been characterized in this investigation.

(I)

The short c axis [3.945 (4) Å] for a disubstituted benzene molecule suggests face-to-face intermolecular $\pi-\pi$-stacking interactions. Mean-plane calculations for the aromatic rings stacked along the c axis give interplanar separations of 3.48 (1) Å (Fig. 2). The rings are displaced from each other (direct overlap is repulsive) such that the shortest separations between any two aromatic C atoms in translation-related rings are $\mathrm{C} 1 \cdots \mathrm{C} 2^{\text {iii }}=3.510(6) \AA$ and $\mathrm{C} 4 \cdots \mathrm{C} 5^{\mathrm{iii}}=3.511$ (6) \AA [symmetry code: (iii) $x, y, 1+z$].

The 16 molecules of the unit cell are shown in Fig. 3. Two weak, but quite linear, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present (Table 2), such that each molecule is linked to four other molecules (Fig. 4). Here, O1 is the acceptor atom and C2 and C 8 are the donor atoms.

The $\mathrm{C}_{\text {aromatic }}-\mathrm{Cl}$ bond length [1.747 (3) \AA] is normal, as are all other bond lengths and angles for this type of molecule. The shortest intermolecular distance involving the Cl atom is $\mathrm{Cl} 1 \cdots \mathrm{C} 9^{\text {iv }}=3.541$ (5) \AA [symmetry code: (iv) $5 / 4-x,-1 / 4+y$, $3 / 4+z]$, similar to the sum of van der Waals radii, $3.45 \AA$ (Bondi, 1964; Spek, 2001).

Figure 1
The atomic arrangement in the molecule. Displacement ellipsoids are shown at the 50% probability level.

Experimental

The title compound was purchased from Aldrich and crystals were grown by sublimation.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}$
$M_{r}=168.61$
Orthorhombic, Fdd2
$a=18.6188$ (14) \AA
$b=45.383$ (4) A
$c=3.945$ (4) \AA
$V=3334(3) \AA^{3}$
$Z=16$
$Z=16$
$D_{x}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
$T_{\text {min }}=0.926, T_{\text {max }}=0.969$
4434 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 7501 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.20 \times 0.10 \times 0.08 \mathrm{~mm}$

1292 independent reflections
1105 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.082$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 24$
$k=-58 \rightarrow 58$
$l=-2 \rightarrow 5$

Figure 2

Translation $\pi-\pi$ stacking (for clarity, only four of the 16 molecules in the unit cell are utilized).

Figure 3
A selection of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the 16 molecules of the unit cell (additional molecular translations along [001] are required for completeness).

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
1292 reflections
127 parameters
Only coordinates of H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$
Absolute structure: Flack (1983); 367 Friedel pairs
Flack parameter $=0.08(9)$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 4$	$1.747(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.376(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.215(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.511(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.403(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.516(4)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.500(4)$		
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$114.0(2)$		
			$173.3(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-6.5(5)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	

Figure 4
Edge view showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding linking a 4chloropropiophenone molecule to four adjacent molecules.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.97(3)$	$2.46(3)$	$3.404(5)$	$167(3)$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{ii}}$	$1.00(3)$	$2.48(3)$	$3.462(5)$	$167(3)$
Symmery				

Symmetry codes: (i) $x-\frac{1}{4}, \frac{1}{4}-y, \frac{3}{4}+z$; (ii) $x-\frac{1}{4}, \frac{1}{4}-y, z-\frac{1}{4}$.

All H atoms were initially placed in calculated positions and thereafter allowed to refine freely with constrained isotropic displacement parameters; for methyl H atoms $U_{\text {iso }}=1.3 U_{\text {eq }}(\mathrm{C})$, for non-methyl H atoms $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$. Final $\mathrm{C}-\mathrm{H}$ bond lengths ranged from 0.90 (4) to 1.01 (3) \AA.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2001).

We thank the EPSRC for use of the National Crystallographic Service at Southampton University (X-ray data collection), and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Gdaniec, M. \& Polonski, T. (1998). J. Am. Chem. Soc. 120, 7353-7354.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Nakano, K., Sada, K., Kurozumi, Y. \& Miyata, M. (2001). Chem. Eur. J. 7, 209220.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Scott, J. L. (1997). Supramol. Chem. 8, 231-239.
Sheldrick, G. M. (1997). SHELXL97-2. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. Version 101201. University of Utrecht, The Netherlands.
Weisinger-Lewin, Y., Vaida, M., Popovitz-Biro, R., Chang, H. C., Mannig, F., Frolow, F., Lahav, M. \& Leiserowitz, L. (1987). Tetrahedron, 43, 1449-1475.

